Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The AI4GA project is developing a nine-week elective course called Living and Working with Artificial Intelligence and piloting it in several Georgia middle schools. Since we aspire to educate all students about AI, the course addresses a wide range of student abilities, levels of academic preparedness, and prior computing experience, and leaves room for teachers to adapt the material to their own students' needs and interests. The course content is primarily focused on unplugged activities and online demonstration programs. We also provide small programming projects using AI tools as an option for teachers to incorporate. In this poster we describe lessons learned from initial pilot offerings by five teachers who taught 12 sections of the course totaling 299 students. We present evidence that middle school students can successfully engage with substantive technical content about Artificial Intelligence.more » « less
-
Over the past year, our AI4GA team of university faculty and middle school teachers have co-designed a middle school AI curriculum. In this poster we share how we used co-design both as a tool for collaboratively developing engaging AI activities and as a mechanism for mutual professional development. We explain our co-design process, give examples of curriculum materials provided to teachers, and showcase several teacher-created activities. We believe this approach to curriculum development centers the lived experiences of teachers and leverages the knowledge and expertise of university researchers to create high quality and engaging AI learning experiences for K-12 students.more » « less
-
This paper explores the potential of virtual education options to fulfill policies designed to broaden participation in computer science (CS) education. Virtual education platforms inherently offer access to a wider range of students than traditional brick-and-mortar schools. Access does not preclude the various socio-economic challenges to engaging these platforms, but this format could be used to mitigate barriers to reaching groups of students that have historically been marginalized in CS courses. In 2019, Georgia passed legislation that requires all middle and high schools to offer CS courses by 2025. The legislation also allowed for virtual courses to satisfy the requirement. While the legislation is intent on broadening participation in CS education, it specifically incorporates a virtual option, making it novel among similar legislative actions across the country. In this context, we examine whether virtual CS courses increase access for marginalized student populations. As such, we explore (1) to what extent do the disparities in CS education found in brick-and-mortar classrooms also appear in virtual settings and (2) to what extent is there an association between modality and rurality on CS course enrollment. Using district enrollment data from 2012 to 2019 for CS courses in Georgia, we calculated the percentage of students in marginalized groups that enrolled in physical courses across the state compared to the percentage enrolled in statewide virtual courses to illuminate existing disparities in enrollment. We conducted this analysis at the district level to highlight variability in representative disparity and the underlying structural differences that might contribute to these disparities. Our analysis provides insight that incorporates the different levels of representative disparity districts have overall. As an early adopter of virtual CS education, the Georgia model provides valuable information for states interested in policies to broaden participation in CS courses.more » « less
-
Interfering with the self-assembly of virus nucleocapsids is a promising approach for the development of novel antiviral agents. Applied to hepatitis B virus (HBV), this approach has led to several classes of capsid assembly modulators (CAMs) that target the virus by either accelerating nucleocapsid assembly or misdirecting it into non-capsid-like particles. Here, we have assessed the structures of early nucleocapsid assembly intermediates, with and without bound CAMs, using molecular dynamics simulations. We find that distinct conformations of the intermediates are induced depending on whether the bound CAM accelerates or misdirects assembly; these structures are predictive of the final assembly. We also selected non-capsid-like structures from our simulations for virtual screening, resulting in the discovery of several compounds with moderate anti-viral activity and low toxicity. Cryo-electron microscopy and capsid melting experiments suggest that our compounds possess a novel mechanism for assembly modulation, potentially opening new avenues for HBV inhibition.more » « less
An official website of the United States government
